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Abstract We consider a scenario where a population of customers is spatially distributed
in a region which is served by two wireless service providers that offer Internet
Access via two noninterfering technologies: one having a uniform coverage over
the region (e.g. WAN), and the other, a limited coverage (e.g. WiFi “hotspots”).
We assume that customers are equipped with “dual mode” wireless commu-
nication devices that have the capability to select which among the available
providers to use. We introduce a stochastic geometric model for the locations of
customers and providers’ access points and a utility-based mechanism modeling
how devices select among providers. In particular, we assume that each device
makes greedy decisions at random times, i.e., selects the available provider of-
fering the highest utility at that time. We demonstrate that this process may have
multiple equilibria, and prove that the system will almost surely evolve to one of
the equilibrium configurations, starting from any initial configuration for users’
choices. We also provide conditions under which the set of equilibria is relatively
“tight” – in this case the equilibrium configuration of agents’ choices is "maxmin
fair" and thus is desirable if providers wish to cooperate in providing users with
worst case performance guarantees. As an application of our framework we ana-
lyze the WAN and WiFi competition in an asymptotic scenario where the service
zones of WAN provider are much larger than those of WiFi access providers.
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Introduction
Moving decision-making from access points to communication devices pro-

vides a path to achieving scalability in future complex and diverse networking
landscapes [1]. Thus, we believe that increasingly, end-nodes will have the
capability to use multiple communication modes to transfer data among them-
selves and/or connect to the wired network. For example, a “dual-mode” phone
may be able to connect to a wide area cellular network or to an IEEE 802.11
LAN access point [2]. Users of such devices are able to decide which mode of
communication they will use. In fact, such decision-making would likely be
carried out by a software “agent” driven by users’ preferences or engineering
design goals. For example, decisions could be based on proximity, amount
of interference, quality of service, or, more abstractly, based on a utility func-
tion capturing a user’s valuation for the available services and their respec-
tive costs. Furthermore, decisions might be based on “local” estimates and/or
“global” signaling from providers, e.g., a “price” signal. Through such signals,
the providers can guide agent’s local decisions towards ones that are system or
socially optimal.

Giving such freedom of choice to end-nodes is likely to affect system perfor-
mance, and will result in competition among devices for the best resource (e.g.
access point) as well as competition among providers to get a larger share of
subscribers. This paper is a first step towards understanding such competition.
We consider a scenario where a spatially distributed population of customers
are equipped with dual mode devices and are served (on the downlink) by two
wireless service providers. We assume that one of the providers utilizes a wide
area network (WAN) technology, e.g. IS95, whereas the other provider uses
a set of non-interfering wireless local area network access points (APs) e.g.
IEEE 802.11 (WiFi “hotspots”). Our objective is to develop a framework to
analyze the interplay among the agents’ decision rules, technological aspects,
such as coverage and aggregate bandwidth available at the access points, and
the densities of agents and access points, will affect the ability of providers to
compete for a share of subscribers.

In Section 1 we formulate the stochastic geometric model for providers’
service zones and define utility-based decision rules. In Section 2 we prove
convergence to equilibrium configurations for agents’ decisions, and then in-
vestigate the properties of the equilibrium in Section 3. Lastly, in Section 4 we
will demonstrate how our results can be used to estimate the regimes where
the hotspots and WAN APs are competitive, i.e. the majority of agents exert
nontrivial choices.
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1. Model for the network geometry and agents' decisions
To model the geometry of the network we use the stochastic-geometric

framework introduced in [4]. The basic idea is to represent the locations of
subscribers and access points as realizations of spatial point processes (e.g.
Poisson) and the service zones associated with the access points as functionals
of the realizations of these processes. The main advantage of such models is
that they allow one to analytically capture the effect of spatial variations in the
system based on a reduced set of salient parameters.

We will use three point processesΠa, Πh andΠw, to represent the locations
of agents, hotspots and WAN APs respectively. At this point we do not restrict
ourselves by considering particular distributions those processes might have.
Instead, we require all three of them be simple processes (see, e.g. [5]) so that
the location of each WAN or hotspot AP is not shared by any other AP. Below
we define some notation that will be used throughout the paper.

πa = {ai}∞
i=1, πh = {hk}∞

k=1 andπw = {wm}∞
m=1 – represent realizations

of Πa, Πh andΠw on the plane. For brevity, we useai to denote both the
agent and its location (similarly for hotspots and WAN APs).

π(A) – all points of the realizationπ of a point processΠ that fall within
the setA.
∣∣π(A)

∣∣ – the number of points of the realizationπ that fall within the set
A.

|x| – the length of vectorx∈ R2.

B(x, r) – the disc of radiusr centered at pointx∈ R2.

Vw
m – the Voronoi cell of WAN APwm∈ πw. (The Voronoi cell associated

with the pointyi of realizationπ is defined as the set of points on the
plane that are closer toyi than to any other pointy j ∈ π\{yi}.)
Vh

k – the Voronoi cell of hotspot APhk ∈ πh.

K m = {k : hk ∈ πh(Vw
m)} – the indices of hotspots located within the

Voronoi cellVw
m .

Sh
k – the service zone (see below) of hotspot APhk.

Sw
m – the service zone of WAN APwm.

We will refer to the “service zone” of WAN or hotspot AP as the set of locations
on the plane, that the AP can serve. We assume that agents which fall within the
service zones of several APs are able to choose which AP to connect to. In the
next few paragraphs we describe our models for the service zones associated
with each AP as well as the criterion each agent uses to connect to a particular
access point.
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(a) (b)

Figure 1.1. (a): Boxes represent APs of the WAN provider, whereas triangles represent the
APs of the hotspots. The coverage area of each box is modeled by its Voronoi cell, while that of
the triangles is modeled by discs of radiusd centered at the triangles.(b): Voronoi cell of WAN
AP “augmented” with hotspots’ service zones as the service zone for this WAN AP.

Service zones for hotspots. Note that the coverage of a hotspot is usually
limited due to constraints on transmit power of devices operating in unlicensed
spectrum. Thus with each hotspot APhk ∈ πh we associate a discB(hk,d) of
some radiusd > 0 and assume that the service fromhk is feasible only within
this disc (see Figure 1.1 (a)). In addition, we assume that agents desiring to
connect to a hotspot will connect only to the closest feasible hotspot, which
yields a service zoneSh

k for hotspot APhk given by:

Sh
k , Vh

k ∩B(hk,d) .

Service zones for the WAN. By contrast with hotspots, WAN service covers
all spatial locations. Still, the definition of service zones depends on the under-
lying technology. For instance, in CDMA-based technologies the association
of mobiles with APs is different for the up- and down-links [6]. Moreover,
the service zones corresponding to two different WAN APs are in general not
disjoint and, in fact, overlap to permit soft handoffs.

Appropriate models for CDMA service zones have been recently considered
in [7], [8]. In particular the authors have shown that under some conditions
(large enough power at APs, large attenuation) the service zone associated with
any AP converges to its associated Voronoi cell. This suggests that Voronoi
cells might be a reasonable model for service zones.

Note, however, that if we represent the service zones as Voronoi cells, agents
that belong to hotspots that are crossed by the boundary of a Voronoi cell asso-
ciated with some WAN AP might be choosing between this hotspot and one of
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two WAN APs. This poses certain problems in the analysis of the model, be-
cause agents’ decisions interact across WAN AP service zones. To overcome
this difficulty we shall impose a constraint that each agentai ∈ πa selects be-
tween the closest hotspot APhk (if it is covered by its service zone) and the
WAN AP wm which containshk in its service zone (see Figure 1.1 (b)). When-
ever the hotspots’ service ranged is much smaller than the average size of a
WAN cell, this assumption will not significantly affect our results. We will
define the service zone of WAN APwm as the “augmented” Voronoi cellVw

m :

Sw
m = Vw

m

[( [
k∈K m

Sh
k

)∖
 [

l∈∪n6=mK n

Sh
l


 .

Assumption1.1. The service zonesSw
m, ∀m∈N, contain an a.s. finite number

of agents and hotspots.

Agents' selection criterion. Let Cm be the subset ofSw
m that includes only

the area where agents have the option to choose among a hotspot and WAN AP
wm:

Cm ,
[

k∈K m

Sh
k ,

and letC̄m = Sw
m\Cm. We assume that any agents whose location is inC̄m

can not make a choice and thus connect to the WAN APwm. By contrast, an
agentai ∈Cm is also covered by some hotspothk’s service zone and can choose
betweeneitherconnecting tohk or the WAN APwm.

Consider an agentai that is connected to a WAN AP at timet. We model
her level of satisfaction with the service via a the utility functionUw(Nw(ai , t))
of the total number of agentsNw(ai , t) that at timet are connected to the same
WAN AP as agentai . Similarly, we assign a utility functionUh(Nh(a j , t)) to
an agenta j to model her level of satisfaction if she is connected to a hotspot,
whereNh(a j , t) denotes the total number of agents that are connected at timet
to the same hotspot as the agenta j . Thus, in this framework, utility functions
are only “congestion” dependent and independent of positions of agents rela-
tive to the access points1. In the sequel we will use the following assumption
for the utility functions:

Assumption1.2. Uw(·) :R+ 7→R andUh(·) :R+ 7→R are continuous, mono-
tonically decreasing functions.

Now we describe how we model the decision process in this system. We
postulate that an agentai ∈Cm switches at timet to the WAN APwm from its
hotspot if and only if she was connected to this hotspot AP at timet− and

Uw
(

Nw(ai , t
−)+1

)
> Uh

(
Nh(ai , t

−)
)

,
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where t− refers to the time immediately prior tot. Similarly, the agentai

switches to a hotspot AP at timet if and only if she was connected to a WAN
AP att− and

Uh
(

Nh(ai , t
−)+1

)
≥Uw

(
Nw(ai , t

−)
)

.

Note that we break ties in favor of hotspots.

Assumption1.3. Agents’ decision times withinCm are given by a simple point
processΦm with realizationsφm which obey the following:

φm almost surely contains infinitely many points inR+, i.e. φm= {sk}∞
k=1,

wheresk ∈ R+ for k = 1,2, . . .

each point ofφm is associated with a decision time for a unique agent
within Cm

a pointsk ∈ φm is a decision time of the agentai ∈Cm with somepositive
probability pi , which possibly depends on realizationφm up to timesk

and the history of agents choices up to timesk.

Assumption 1.3 postulates that only one agent withinCm can make decision
at a time, each agent has unlimited opportunities for decision making, and any
decision time with some positive probability is associated with a particular
agent.

2. Convergence to equilibrium.
We call a particular configuration of agent’s choices an equilibrium con-

figuration, if and only if the system remains in this configuration indefinitely
provided it starts in this configuration.

Proposition 2.1. (Convergence to equilibrium.) Consider the service zone
Sw

m for a particular fixed realizationπa, πh and πw. Then under Assump-
tions 1.1-1.3, given any initial configuration of connections at timet = 0, the
system converges a.s. to an equilibrium configuration ast → ∞.

Here we will give the essential idea of the proof whereas the rest of the de-
tails we placed in Appendix 1.A.1. Note that the dynamics of the configuration
of agents’ decisions inSw

m follow a continuous-time Markov chain with state
X (t) := {X(ai , t)| ai ∈ πa(Cm)}, whereX(ai , t) ∈ {0,1} denotes the “connec-
tion state” of the agentai at timet. It takes the value0 if the agent is connected
to a hotspot, and1 if she is connected to a WAN AP. We shall classify de-
cision times for this chain as “up”, “down” and “stay”, corresponding to an
agent switching from a hotspot to the WAN AP, vice versa, or staying with her
current choice. For simplicity we uniformize the continuous time chain, and
focus on a discrete-time Markov chain capturing the state at decision times.
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We shall denote these times vias= 1,2, . . .. The transition probabilities for
the discrete-time Markov chain are comprised of two factors: the probability
that a particular agent reconsiders her decision at that time and whether, given
the current configuration, the agent would change providers.

By Assumption 1.1, each service zone contains an a.s. finite number of
agents, thus there is an a.s. finite number of possible configurations for agents’
choices. It follows that some of the states must be revisited by the chain in-
finitely often. To show the convergence of the process to an equilibrium, it
suffices to construct a feasible path for the chain evolution which starting from
any initial configuration hits an equilibrium state, and has a positive probabil-
ity of occurring. Since the state space is a.s. finite, and at least one state is
visited infinitely often, this guarantees that the chain is transient, i.e. reaches
an equilibrium state with probability 1.

Below we describe the steps of an algorithm to construct a pathP consist-
ing of a sequence of transitions for the stateX (s), which, starting from any
arbitrary configuration of agents’ choicesX (0), ends up in an equilibrium con-
figuration after a finite number of steps. LetAu(s) denote the set of agents that,
given the configuration at times, could make “up” transitions andAd(s) the
set of agents that can make “down” transitions. We describe our algorithm in
terms of the pseudo-code shown in Table 1.1. Note that the algorithm assumes
that an agent making her decision at time slots≥ 1 is basing this decision by
observing the state of the system prior to that time, i.e. at times−1.

In short, after initialization, the algorithm alternates between phases where
“up” and “down” transitions occur. During the Up-transition phase only the
“up”-switches occur, and agents performing these transitions are selected from
the most “congested” hotspots. This phase ends once the set of agents able to
perform the “up” switches is empty. At that time the algorithm switches to the
Down-transition phase, where at most one agent performs a “down” switch.
If an agent performs an “up” switch at times, we track the number of agents,
K(s), that shared the hotspot with this agent prior to her switching at times.

To show that this algorithm finishes in finite time in Appendix 1.A.1 we
prove thatK(s),s = 1,2, . . . is a non-increasing sequence that at each time
bounds above the number of agents within each hotspot inSw

m. Thus since
K(·) is integer valued and non-negative, it must converge to some valueK∗

m in
an a.s. finite time. OnceK(·) converges, we prove that only down transitions
can occur, and since there is an a.s. finite number of agents in each WAN APs
service location, an equilibrium must be reached in finite time.

In summary, we have shown that from any starting configuration there exists
a path,P , that reaches an equilibrium state. Moreover, by Assumption 1.3
the overall probability of the pathP is strictly positive. Since the state space
is finite, there must be a state which is visited infinitely often. Whence the
Markov chain will necessarily eventually hit an equilibrium state.
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Initialization:
s= 1 andX (s) = X (0)
go to Up-transition phase

Up-transition phase:
repeat:

{ choosea j = argmaxai∈Au(s) Nh(ai ,s)
K(s) := Nh(a j ,s)
let a j make an “up” transition
update the stateX (s)
s := s+1 }

until Au(s) = /0
go to Down-transition phase

Down-transition phase:
if Ad(s) 6= /0:

{ choose anya j ∈ Ad(s)
let a j make a “down” transition
update the stateX (s)
K(s) := K(s−1)
s := s+1
go to Up-transition phase }

otherwise: done

Table 1.1. Pseudo-code for constructing the pathP converging to equilibrium.
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3. Structure of equilibrium.
In this section we will give a characterization of the system state, i.e., config-

uration of agents’ decisions, define a notion of uniqueness, and analyze under
what conditions the system equilibrium is unique. We first introduce some
additional notation2

Mw
m =

∣∣πa(Sw
m)

∣∣ – the number of agents located within the service zone
of WAN AP wm.

Mh
k =

∣∣πa(Sh
k)

∣∣ – the number of agents located within the service zone of
hotspothk.

Mw
Cm

=
∣∣πa(Cm)

∣∣ – the number of agents located withinCm, i.e. agents
that can make choices.

Mw
C̄m

= Mw
m−Mw

Cm
– the number of agents located within̄Cm, i.e. the

agents that cannotmake choices.

Hm =
∣∣πh(Sw

m)
∣∣ – the number of hotspots located within the service zone

of WAN AP wm.

X πa,πh,πw

m , {X(ai)| ai ∈ πa(Cm)} – denotes the system configuration in
service zoneSw

m associated with a fixed realizationπa, πh andπw. Here
X(ai) ∈ {0,1} takes the value0 if agentai is connected to a hotspot, and
1 if she is connected to a WAN AP.

Tm = Tm(πa,πh,πw) – the a.s. finite set of possible system configurations
(states) inSw

m for a given realizationπa, πh andπw.

Em – the set of all system configurationsc∈ Tm that correspond to equi-
libria in Sw

m.

Fm = Fm(πa,πh,πw) – subset ofEm which consists of only “fair” equi-
libria (see below).

Nw
m(c) – the number of agents that connect to WAN APwm in configura-

tion c∈ Tm.

Nh
k (c) – the number of agents that connect to hotspot APhk in configu-

rationc∈ Tm.

(Uw)−1(·) – unique and decreasing, by Assumption 1.2 inverse ofUw(·).
(Uh)−1(·) – unique and decreasing inverse ofUh(·).
G(·), (Uh)−1◦Uw(·) – nondecreasing composition of(Uh)−1 andUw(·)
J(·) , (Uw)−1◦Uh(·) – nondecreasing composition of(Uw)−1 andUh(·)
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Characterization of a con�guration. For any fixed realizationπa, πh and
πw consider only WAN APswm that have at least one hotspot in their service
areas, i.e. K m 6= /0. For suchm we characterize the system configuration
c ∈ Tm for the service zoneSw

m by a vectorNm(c) , {Nh
k (c)| k ∈ K m}. The

vectorNm(c) determines how many agents are connected to each hotspothk

for k∈K m in configurationc∈ Tm.

Definition 3.1. We say that two configurations for agents’ choices character-
ized byNm(c) and Nm(c′) are equivalent, and writeNm(c) ∼ Nm(c′), if the
components of the vectorNm(c) are a permutation of those ofNm(c′).

Fair equilibria.
Definition 3.2. We say that a configurationc∈ Tm is “fair” if its characteri-
zationNm(c) = {Nh

k (c)|k∈K m} satisfies, for someK ∈ Z+:

∀k∈K m :

{
K−1≤ Nh

k (c)≤ K , if Mh
k ≥ K ,

Nh
k (c) = Mh

k , otherwise.

If c is also an equilibrium configuration we say thatc is a “fair” equilibrium.

We shall interpret this definition via Figure 1.2. The hexagonal region is
a schematic representation of the service zoneSw

m, while the positions of the
cylinders represent the locations of hotspots. The height of each cylinder rep-
resents the overall number of agents that fall within the service zone of a par-
ticular hotspot.

��
�

WAN 
coverage 

area

LAN 
hotspot’s 
coverage 

areas

��
�

# of 
agents 
choosing 
hotspot

# of 
agents 
choosing 
WAN

Load 
(# of agents at 

hotspots)

��
�

Figure 1.2. Structure of a “fair” configuration.

Assume that the slicing plane in Figure 1.2 is one unit thick and its upper
surface is placed at integer-valued heightsK above the surface ofSw

m. Any
“fair” configuration has the following assignment of agents to APs:
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All agents inSw
m\Cm connect to WAN APwm.

A number of agents corresponding to the parts of cylinders that fall under
the lower surface of the slicing plane connect to their respective hotspots.

A number of agents corresponding to the parts of cylinders above the
upper surface of the plane connect to the WAN APwm.

Finally, a number of agents corresponding to the parts of cylinders within
the slice connect to either their associated hotspots or WAN APwm.

In what follows, to avoid ambiguity we will always associate a fair configura-
tion f with the “cutoff” plane at level3 Km( f ) = maxk∈K m

Nh
k ( f ). Note, that in

fair configurationf the hotspots having more thanKm( f ) agents in their ser-
vice zones yield the “overload” to the WAN APwm. As a result the number
of agents connected to those hotspots is nearly the same, i.e. eitherKm( f ) or
Km( f )−1.

By the construction used to prove Proposition 2.1 we can always find a po-
sition of the slicing plane,K = K∗

m, and an assignment of agents corresponding
to the parts of cylinders at the slice, so that the connection configuration inSw

m
is a fair equilibrium. This results in statement(i) of Proposition 3.1.

Proposition 3.1. For any realizationπa, πh andπw we have that:
(i) The set of all fair equilibria,Fm, is not empty.
(ii) All fair equilibria have equivalent characterizations, i.e. for allf , f ′ ∈ Fm,
Nm( f )∼ Nm( f ′).

For the proof of statement (ii) of Proposition 3.1, see Appendix 1.A.2.

Non-uniqueness of equilibrium.

Definition 3.3. For a particular realizationπa, πh and πw we say that the
equilibrium inSw

m is unique if for anye,e′ ∈ Em we haveNm(e)∼ Nm(e′).

Note that agents’ decisions are discrete in nature, and unfortunately, this can
lead to multiple equilibria in the system, even when we understand uniqueness
in the weak sense of Definition 3.3. Below we show this via a simple example.
Observe that for all equilibrim configurationse∈ Em we must have that:

Uh
(

Nh
k (e)+1

)
< Uw

(
Nw

m(e)
)

andUh
(

Nh
k (e)

)
≥Uw

(
Nw

m(e)+1
)

(1.1)

for all k ∈ K m such that the service zoneSh
k has an agent connected to the

WAN AP wm and an agent connected tohk. Also we must have that:

Uh
(

Nh
l (e)

)
≥Uw

(
Nw

m(e)+1
)

,
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for all l ∈ K m such that the service zoneSh
l hasall of its agents connected to

hl . Lastly,

Uh(1) < Uw
(

Nw
m(e)

)
, (1.2)

must be satisfied for allp∈ K m such that all agents withinSh
p are connected

to wm in equilibrium. It follows from (1.1) that:

G
(

Nw
m(e)

)
−1 < Nh

k (e)≤G
(

Nw
m(e)+1

)
, (1.3)

for hotspotshk ∈ πh(Sw
m) with at least one agent connected to the WAN APwk.

Note that, depending on the utility functions there can be more than one integer
solution to the inequalities (1.3). Consider, for example:

Uh(N) = N−β , Uw(N) = N−α , (1.4)

whereα > β > 0. In this caseG(N) = Nα/β, and the gap between the right
and left hand side in (1.3) increases withNw

m(e). In other words, when the
number of agents, not covered by hotspots is large enough, there can be many
integer solutions to the inequalities (1.3). Hence, “unfair” equilibria can be
constructed easily from the fair one. For example we could switch some num-
ber L of agents from WAN APwm to a particular hotspothk and the same
numberL of agents from some other hotspothl within the same WAN APwm.
Note that this procedure would not change the number of agents connected to
the WAN AP. IfL is selected so that theNh

k (e)−L andNh
l (e)+L are still within

the bounds (1.3), this procedure would result in a feasible equilibrium which
is not equivalent to the fair one.

Conditions guaranteeing uniqueness and fairness. One might ask un-
der what conditions the equilibrium inSw

m is unique. The following result
assumes that the utilities have a particular property, and that the cells of the
WAN provider are large enough to guarantee that a sufficiently large number
of agents connects to the WAN AP in equilibrium.

Proposition 3.2. Suppose that there existsN such that for allN≥ N

G(N+1)−G(N) < 1, (1.5)

and assume that the number of agents that can not make choices in service
zoneSw

m satisfies:
Mw

C̄m
≥ N . (1.6)

Then, the equilibrium inSw
m is unique and fair.

We prove this proposition in Appendix 1.A.3. In general, if the property (1.5)
holds then it must be the case that the utility function associated with con-
nections to hotspots decrements faster in the number of connected agents than
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the utility associated with connections to the WAN AP4. One such example is
given by (1.4) withβ > α > 0.

System performance in equilibrium. Let us defineUmin
m (c) to be the

minimum over the utilities of agents withinSw
m that choose according to con-

figurationc∈ Tm. We refer toUmin
m (c) as the utility of the bottleneck agent for

the configurationc.

Proposition 3.3. If the equilibrium inSw
m is unique, thenUmin

m (c) ≤Umin
m ( f ),

for all f ∈ Fm andc∈ Tm.

We prove this proposition in Appendix 1.A.4. Thus, when equilibrium con-
figuration of agents’ choices is unique, it would maximize the utility of the
bottleneck agents over all possible configurations of agents’ choices. When
agents’ utilities are associated with a congestion-only-dependent performance
metric, utility based choice mechanism would realize equilibria that are favor-
able from the point of view of worst case performance. We further explore the
performance aspect of a multi-provider scenario in [11].

4. Estimation of competitiveness of WAN vs WiFi
hotspots.

In this section we discuss how to compute the fractions of agents that are
connected to WAN APs and hotspots in equilibrium. We choose these fractions
to be our metric to assess the competitiveness of one provider versus another.
For simplicity of exposition we assume5 that Πw,α is a deterministic process
such that the Voronoi cells associated with each WAN AP are geometrically
similar and have the same areaα. We further assume that the processesΠh and
Πa are stationary Poisson processes with densitiesλh andλa respectively.

The non-uniqueness of equilibria poses certain difficulties in analyzing the
model for arbitrary utilities, densities and cell sizes. Note that in practice, the
sizes of WAN service zones typically would exceed that of hotspots6. Thus, to
simplify our analysis we will study the system where the size of WAN service
zones,α is large enough to contain a large number of agents and hotspots.
Intuitively, one might expect that when the WAN service zones grow in area,
the set of different equilibria becomes tighter, i.e., a type of the Law of Large
Numbers making the system more amenable to analysis. In the next paragraph
we demonstrate that this intuition is indeed correct.

Setup for asymptotic analysis.. We consider a collection of deterministic
point processes{Πw,α} indexed byα ∈ R+ where each represents the spatial
locations of WAN APs that are increasingly spread out. In particular, we sup-
pose that the area of the Voronoi cell associated with any pointwα

m∈ πw
α is equal
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to α, and letα grow. Let us also assume that for eachα > 0, πw,α contains a
pointwα

0 at the origin.
In what follows we will consider the service zones of WAN APwα

0 and
we will use the same notation as before to refer to the number of agents and
hotspots falling within the service zone of the WAN APwα

0 ∈ πw,α, but indicate
the dependence on the areaα via the corresponding superscript. Thus, for
example we will writeHα

0 to indicate the number of hotspots that fall within
the service zoneSw,α

0 of the WAN APwα
0 . In addition, we useEh

0 [A0] to denote
the expectation of the quantityAk associated with a typical hotspothk (see,
e.g. [10]).

For fixedλh andλa the service area of each WAN AP will have to support
a larger (roughly linear inα) number of users asα grows. Therefore, we will
assume that the WAN resources also scale withα. This leads to a scaling
requirement on the utility function associated with connecting to the WAN.
Let Uw,α(·) denote the utility function associated with connecting to the WAN
when the area of a Voronoi cell of any WAN AP isα, and assume thatUw,α(·)
satisfies Assumption 1.2 for utility functions. DefineJα(N) = (Uw,α)−1◦Uh(·)
(whereUh(·) is independent ofα) and assume the following:

Assumption4.1. The scaling ofJα(N) with α is such that:

1 Jα(N) = α j(N) for anyN ∈ N,

2 limN→∞ j(N) = ∞,

3 There exists̄N, such thatj−1
(
(N+1)/α

)
− j−1

(
N/α

)
< 1, for all N≥

N̄ and eachα > 0.

4 For any integerK ≥ 2, u(K) 6= j(K), j(K−1), where

u(K) = λae−λhπd2
+λhEh

0

[
(Mh

0−K +1)1{Mh
0≥K}

]
. (1.7)

The interpretation of these assumptions are as follows. Condition 1 means
that the resources of WAN APs scale linearly in the areaα of their service
zones. For example, we might haveUh(N) = Bh

N andUw,α(N) = αBw

N , in which
caseJα(N) = αBw

Bh N. The second condition follows if, as more agents connect
to a resource, the utility of those agents is strictly decreasing to zero. The third
condition will allow us to use Proposition 3.2 to argue that the equilibrium in
Sw,α

m is unique with probability approaching 1 asα→ ∞. Finally, the last con-
dition is technical (see Appendix 1.A.5), and satisfied for the cases of interest.

We study the asymptotics of this system in Appendix 1.A.5. The results of
our study are summarized in Theorem 4.1. Here when we say that an eventEα

happens with high probability (w.h.p.) we mean thatlimα→∞P(Eα) = 1.
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Theorem4.1. Consider any realization of the Poisson point processesΠa and
Πh and the sequence of deterministic processes{Πw,α} with Voronoi cells of
areaα and each with a typical cell centered at the origin. Under the scaling
Assumption 4.1 we have:

1 The equilibriumf α
0 in Sw,α

0 is unique and fair w.h.p.

2 The largest number of agents connected to each hotspot in this equilib-
rium, Nh,α

max( f α
0 ) = maxk∈K α

0
Nh

k ( f α
0 ) has a limit:

lim
α→∞

Nh,α
max( f α

0 ) = Nh,∞
max,

for some integerNh,∞
max≥ 0.

3 We have thatNh,∞
max > 0 if and only if j(1) ≤ λa in which case it is given

by the largest integer solution forK ≥ 1 of the inequality

u(K)≥ j(K) , (1.8)

whereu(K) is given by (1.7).

The basic idea of the proof is to leverage the analogs of the Law of Large
Numbers for functionals on random sets, e.g. Voronoi cells, which have dis-
tributions dependent on realizations of point processes. We also show that
fluctuations from averages for the quantities of interest do not grow “too fast”
as the area of the WAN service zones grows. This allows us to express the
position of the asymptotic “cutoff”Nh,∞

max, in terms of averages of functionals of
the realizations ofΠh andΠa.

Based on Theorem 4.1 the analysis of competition when the WAN cell sizes
are “large” reduces to comparing the numberNh,∞

max= K∗ to the average number
of agents falling within the service zone of a typical hotspot. In particular, if

K∗À Eh
0

[
Mh

0

]
=

λa(1−e−λhπd2
)

λh , (1.9)

then hotspots retain most of the agents that fall within their service zones in
equilibrium. We classify this case as hotspots effectively competing with the
WAN. On the other hand if

K∗¿ λa(1−e−λhπd2
)

λh , (1.10)

the hotspots yield most of their agents to the WAN APs in equilibrium. In this
case we say that hotspots are not competitive with respect to the WAN. Using
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Theorem 4.1, we can suggest the following heuristic approach to estimate the
value ofNh

max. In general one has to solve forK ≥ 0 the equation:

Uw
(

λa|V|e−λhπ|d|2 +λhEh
0 [P0(K)]

)
= Uh(K) , (1.11)

whereP0(K) = (Mh
0−K +1)1{Mh

0≥K}. Note that since the left side of (1.11)

is monotonically increasing inK and the right – monotonically decreasing, the
solution either does not exist (K∗ = 0) or is unique, when it exists. Unfortu-
nately, there is no closed form expression for the termEh

0[P0(K)] and hence
simulation has to be used to estimate it. However, to test if hotspots are not
competitive with respect to the WAN one could use the following simple crite-
rion. Clearly, (1.10) holds if the solution to:

Uw(λa|V|−λhK|V|) = Uh(K) , (1.12)

falls much below the valueλa/λh(1− e−λhπd2
). Note that this allows for a

simple intuitive interpretation. The number of agents and hotspots occupying
WAN service zone tends toλa|V| and λh|V| respectively when|V| is large.
The number of agents connected in equilibrium to hotspots tends toλh|V|K,
wheneverK ¿ λaE|Sh

k|, since then we can assume that each hotspot has ex-
actly K agents connected to its AP in equilibrium. Thus the number of agents
connected to the WAN AP must tend to:

λa|V|−λhK|V| ,

once the size of the WAN service zone gets large enough. Thus, (1.12) follows
by equating the utility of agents that are connected to the WAN AP and utility
of the ones that are connected to hotspots.

5. Conclusion
To summarize, we have developed a stochastic geometric model for a sys-

tem where subscribers with dual mode devices select among two noninterfer-
ing wireless service providers – a WAN provider and a second provider (or
aggregator) of LAN hotspots. Our model is of interest in that, on the one
hand, it captures wireless providers using technologies that might have dif-
ferent capacity and coverage, and on the other hand it captures the role of
subscribers decision-making mechanisms in determining the eventual equilib-
rium. Assuming each subscriber’s decision-making agent makes greedy de-
cisions, based on comparing two “congestion” dependent utilities, at random
times, we show that an equilibrium configuration would eventually be reached.
Further we have characterized such equilibria and shown that they are likely to
be close to the fair equilibrium, which corresponds to slicing the excess loads
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on hotspots, and shifting these to the WAN. In an effort to get numerical es-
timates for the level at which this slicing occurs, we developed an asymptotic
result for the case where WAN service areas are large, which would permit an
evaluation of this setting.

The results in this paper can be viewed from different perspectives. On the
one hand they permit an evaluation of the competitiveness of the two providers
to attract subscribers in their service areas. On the other, they permit a study of
how to design decision making mechanisms, i.e., appropriate utility functions,
to realize equilibria that may be desirable equilibrium for the overall system.
The highlight of this paper is a characterization of such equilibria, that would
permit further consideration of the performance and network design implica-
tions of wireless systems where users are capable to switch among multiple
providers, depending on the key parameters of the system.

Appendix
1. Details of proof of Proposition 2.1
Proof. Here we show thatK(s) is a non-increasing sequence. Indeed, during the execution of an
Up-transition Phase,K(s) may change, but can only be reduced, since only agents inAu(s), and
which belong to the most congested hotspots, are selected to make a transition. Now suppose
that an Up-transition phase finished at timeτ, thenK(τ−1) is the number of agents that shared
the hotspot with the last eligible agent prior to her “up” transition. Considera j ∈ Ad(τ), an
eligible agent for a down transition. Note that for any such agent it must be the case that

Nh(a j ,τ)≤ K(τ−1)−2 (1.A.1)

otherwise the agent that switched up at timeτ−1 could not have improved her utility. Indeed,
suppose at timeτ−1, the agentai switched “up”, then the following inequality must have been
true:

Uw
(

Nw (ai ,τ−1)+1
)

> Uh
(

Nh (ai ,τ−1)
)

. (1.A.2)

Note thatNw(a j ,τ) = Nw(ai ,τ−1)+1, since botha j andai belong to the same WAN service
zone and no other transitions have occurred in the interim. Thus if

Uw
(

Nw(
a j ,τ

))≤Uh
(

Nh(
a j ,τ

)
+1

)

this would contradict to (1.A.2) unlessNh(a j ,τ) ≤ Nh(ai ,τ− 1)− 2 = K(τ− 1)− 2. Thus
an agent that makes a “down” transition right after an Up-transition phase can not increase the
number of agents on her hotspot beyondK(τ−1)−1. Whence upon reentering the Up-transition
phase, if up switches occur they can again only decrease the value ofK(·).

Note, that if one or more “down” switches occur in sequence without any intermediate “up”
transitions, it still remains the case thatK(s) must be an upper bound on the number of agents
sharing a hotspot, of an agent that chooses to make an “up” transition at times. Indeed, assume
that the last Up-transition phase, that had an “up” switch, has finished at timeτ−1 < s and the
agentai has switched “down” at timeτ. The agent’sai ’s switch has occurred due to the fact
that:

Uw
(

Nw(ai ,τ)
)
≤Uh

(
Nh(ai ,τ)+1

)
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Note that for an agenta j switching “down” at timeτ+1, we haveNh(a j ,τ+1)≥Nh(a j ,τ) and
Nw(a j ,τ+1) = Nw(ai ,τ)−1. Hence,

Uw
(

Nw(a j ,τ+1)
)
≤Uh

(
Nh(a j ,τ+1)+1

)

could only be feasible ifNh(a j ,τ + 1) ≤ Nh(ai ,τ), by monotonicity of utilities. But then, in
view of (1.A.1):

Nh(a j ,τ+1)+1≤ K(τ)−1.

By induction, we can show that ifm+1 such “down” transitions took place without any inter-
mediate “up” transitions, then:

Nh(ak,τ+m)+1≤ K(τ)−1,

whereak is the agent that has performed the last “down”-transition.
ThusK(s) is a non-increasing sequence which bounds the number of agents connected to

any hotspot at times. Also sinceK(·) is integer valued sequence, it must converge to some
valueK∗m in a finite time. OnceK(·) converges, only down transitions can occur, and since there
is an a.s. finite number of agents in each WAN APs service location, an equilibrium must be
reached in finite time.

2. Proof of Proposition 3.1
Proof. Consider any fair equilibrium configurationf ∈ Fm and letKm( f ) = maxk∈K Nh

k ( f )
give the level of the corresponding slicing plane (see Figure 1.2). We will first show that for any
two fair equilibria f and f ′ we have thatKm( f ) = Km( f ′).

We show this by contradiction, suppose, in fact that there existf , f ′ ∈ Fm such thatKm( f ) 6=
Km( f ′). Without loss of generality assume thatKm( f ) > Km( f ′). Note that in this case for some
l ∈K m we haveNh

l ( f ) = Km( f )≥ 1. Considering the hotspothl , we get

Uh
(

Km( f )
)
≥Uw(Nw

m( f )+1) (1.A.3)

since otherwise an agent connected to this hotspot would choose to switch to WAN APwm

which would contradict the fact thatf is an equilibrium. Now, for equilibriumf ′ all hotspots
have fewer than or equal toKm( f ′)≤ Km( f )−1 agents, so in particularNh

l ( f ′)≤ Km( f )−1. It
follows by adding 1 to both sides and the fact thatUh() is monotonically decreasing that:

Uh(Nh
l ( f ′)+1)≥Uh

(
Km( f )

)
. (1.A.4)

At the same time, sinceKm( f ′) < Km( f ) it follows that Nw
m( f ′) ≥ Nw

m( f )+ 1. Using the fact
thatUw() is monotonically decreasing we have that

Uw(Nw
m( f )+1)≥Uw(Nw

m( f ′)). (1.A.5)

Now putting (1.A.3),(1.A.4) and (1.A.5) together we have that

Uh(Nh
l ( f ′)+1)≥Uw(Nw

m( f ′))

which implies that underf ′ an agent on WAN APwm would choose to switch to hotspothl .
This contradicts the fact thatf ′ is an equilibrium. Thus we conclude that for anyf ∈ Fm we
haveKm( f ) = K∗m for some integerK∗m.
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In order to show that all fair equilibria are equivalent, we first argue that for two fair equilibria
f ′ 6= f we must haveNw

m( f ) = Nw
m( f ′). Without loss of generality supposeNw

m( f ′)≥Nw
m( f )+1.

Then, for at least one hotspot, sayhl , Nh
l ( f ′) ≤ Nh

l ( f )−1 which also implies thatNh
l ( f ) ≥ 1.

For f to be an equilibrium we must have that:

Uh
(

Nh
l ( f )

)
≥Uw(Nw

m( f )+1)≥Uw(Nw
m( f ′)) , (1.A.6)

which follows from the fact that no agent in hotspothl wishes to switch to the WAN AP and our
assumption. Considering the hotspothl under the equilibrium configurationf ′ we obtain:

Uw(Nw
m( f ′)) > Uh

(
Nh

l ( f ′)+1
)

> Uh(Nh
l ( f )) , (1.A.7)

which is the consequence of the fact that an agent inhl connected to the WAN APwm has no
desire to switch to the hotspothl . Clearly, by monotonicity of utilities we have that (1.A.6) is in
contradiction to (1.A.7).

Thus we know that iff , f ′ ∈ Fm, then we haveNw
m( f ) = Nw

m( f ′) andKm( f ) = Km( f ′) = K∗m,
for some integerK∗m. Next we show that all fair equilibria must have equivalent characteriza-
tions. LetRdenote the number of hotspots inSw

m that have at leastK∗m−1 agents in their service
zones. The equilibrium number of agents connected to such hotspots is betweenK∗m−1 andK∗m.
Now assume thatr < R of theR hotspots haveK∗m−1 agents and the remainingR− r hotspots
haveK∗m agents, connected to their APs under the equilibrium configurationf . Similarly, we
assume thatr ′ < R hotspots haveK∗m−1 agents in the equilibrium configurationf ′. Equating
the total number of agents in the service zoneSw

m in equilibria f and f ′, we have that:

(K−1)r +K(R− r)+ ∑
k∈K m, Mh

k<K∗
m−1

Mh
k +Nw

m( f )

= (K−1)r ′+K(R− r ′)+ ∑
k∈K m, Mh

k<K∗
m−1

Mh
k +Nw

m( f ′) .

SinceNw
m( f ) = Nw

m( f ′) this leads tor = r ′, showing thatNm( f )∼ Nm( f ′).

3. Proof of Proposition 3.2
Proof. By part (i) of Proposition 3.1 there exists a fair equilibrium inSw

m. Let f ∈ Fm be one
such equilibrium and letKm( f ) = maxk∈K m

Nh
k ( f ). We will consider three cases based on the

value ofKm( f ) and show that under the assumptions of the proposition, any other equilibrium,
e∈ Em has the same characterization.

Case 1: Km( f ) = 0. In this case there is no agent inSw
m which connects to a hotspot. If

there are no agents within any of the hotspots’ service zones, then it is nothing to prove, since
no agents make any choices. Otherwise, considering the equilibrium conditions for agents that
fall within some hotspot we have:

Uw(Mw
m) > Uh(1) . (1.A.8)

It follows that no other equilibrium configuration can exist. Indeed, ife 6= f is some other
equilibrium configuration, we must haveNh

l (e) 6= Nh
l ( f ), and thusNh

l (e)≥ 1 yieldingNw
m(e)≤

Mw
m−1. By Assumption 1.2 on utilities, we obtain:

Uw
(

Mw
m

)
≤Uw

(
Nw

m(e)+1
)

andUh
(

Nh
l (e)

)
≤Uh(1) . (1.A.9)
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Sincee is an equilibrium, we should have:

Uw
(

Nw
m(e)+1

)
≤Uh

(
Nh

l (e)
)

, (1.A.10)

since no agent inSh
l wishes to switch to WAN APwm. Combining inequalities (1.A.9) and (1.A.10)

we obtain:
Uw

(
Mw

m

)
≤Uh(1) ,

which contradicts inequality (1.A.8).

Case 2: 0 < Km( f ) = maxk∈K m
Mh

k . In this case we have that there are no agents in

Cm connected to the WAN APwm in configurationeand thus we haveNm( f ) = {Mh
k |k∈K m}.

This can only be feasible if:

Uw
(

Mw
C̄m

)
≤Uh(Mh

k) ,

for k∈K m. Using this inequality instead of (1.A.8) and following the steps similar to the Case
1 one can prove that no equilibriume exists, such thatNh

k (e) < Mh
k for somek∈K m.

Case 3: 0 < Km( f ) < maxk∈K m
Mh

k . Consider any other equilibriume 6= f and note
thatNw

m(e) ≥Mw
C̄m

. Hence the inequalities (1.3) admit at most two integer solutions. It follows
that, for someK ≥ 1 we have that:

K−1≤ Nh
k (e)≤ K ,

for k∈K m such thatMh
k ≥ K and

Nh
k ( f ) = Mh

k ,

otherwise. Hencee must be a fair equilibrium, characterized by the slicing plane at level
Km(e) = K. Since by part(ii) of Proposition 3.1, all fair equilibria are equivalent, we have,
thatN(e)sN( f ).

4. Proof of Proposition 3.3
For any configurationc∈ Tm we will refer to agents that have utility equalUmin

m (c) as the
“bottleneck” agents. Letc∈ Tm be a configuration that maximizes utility of a bottleneck agent
andc 6∈ Fm. We will show thatUmin

m (c) ≤Umin
m ( f ), for all f ∈ K m. Since, by assumption of

the proposition, all fair equilibria inSw
m are equivalent, we have thatNw

m( f ) = Nw
m( f ′), for all

f , f ′ ∈ Fm. Thus to prove the proposition it suffices to consider the following three cases.

Case 1: Nw
m(c) > Nw

m( f ), for all f ∈Fm. In this case we have thatNh
l (c)≤Nh

l ( f )−1
for at least onel ∈ K m. First we prove, that without loss of generality, one can assume that the
bottleneck agents for configurationc are connected to a hotspot. Indeed, we have:

Uh
(

Nh
l (c)+1

)
≥Uh

(
Nh

l ( f )
)

,

and
Uw

(
Nw

m(c)
)
≤Uw

(
Nw

m( f )+1
)

,

by Assumption 1.2 on utilities. Since in equilibriumf we must haveUh(Nh
l ( f ))≥Uw(Nw

m( f )+
1) we arrive at:

Uh
(

Nh
l (c)+1

)
≥Uh

(
Nh

l ( f )
)
≥Uw(Nw

m( f )+1)≥Uw
(

Nw
m(c)

)
.
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Hence,Uh
(

Nh
l (c) + 1

)
≥ Uw

(
Nw

m(c)
)

and thus the utility of the bottleneck agent stays the

same or improves when an agent is switched from the WAN APwm to hotspothl .
Thus if c is maximizing the bottleneck among all configurations of agents choices, the

bottleneck agents could be assumed to be connected to a hotspot. However, considerl =
argmaxk∈K m

Nh
k (c). Then any agent connected to the hotspothl is the bottleneck for con-

figuration c. Thus, since no agent connected to the WAN is the bottleneck forc, we have
Uh(Nh

l (c)) < Uw(Nw
m(c)). Then we have the following chain of inequalities:

Uh(Nh
l (c)) < Uw(Nw

m(c)) ≤ Uw(Nw
m( f )+1) ≤ Uh(Nh

l ( f )) ,
(a) (b)

where inequality (a) follows from the assumption of Case 1, and inequality (b) – from the fact
that f is an equilibrium. ThusUh(Nh

l (c)) < Uh(Nh
l ( f )) which means thatNh

l (c)≥ Nh
l ( f )+1.

Since f is a fair configuration, we havemaxk∈K m
Nh

k ( f ) ≤ Nh
l ( f ) + 1. But then,Nh

l (c) ≥
maxk∈K m

Nh
k ( f ), and henceUmin

m (c)≤Umin
m ( f ).

Case 2: Nw
m(c) < Nw

m( f ), for all f ∈ Fm. We first prove that no agents connected
to the WAN can be the bottleneck for configurationc. Indeed, by assumption of this paragraph,
we have that there exists at least onel ∈ K m such thatNh

l (c) ≥ Nh
l ( f )+ 1. Now assume that

the agents connected to the WAN are the bottleneck for configurationc, henceUw(Nw
m(c)) ≤

Uh(Nh
k (c)), for all k∈K m. Then we have the following chain of inequalities:

Uw(Nw
m( f )) < Uw(Nw

m(c)) ≤ Uw(Nh
l (c)) ≤ Uh(Nh

l ( f )+1) .

HenceUw(Nw
m( f )) < Uh(Nh

l ( f )+1) which contradicts the fact that the agents connected tohl
in configurationf are in equilibrium. This shows that no agent connected to the WAN could be
the bottleneck for the configurationc.

It follows that the agents within the hotspothn, such thatn= argmaxk∈K m
Nh

k (c) are the bot-
tleneck. Since there existsl such thatNh

l (c)≥Nh
l ( f )+1, we have thatNh

n(c)≥maxk∈K m
Nh

n( f ),
by the fair structure off . This yields thatUmin

m (c)≤Umin
m ( f ), which we claimed to show.

Case 3: Nw
m(c) = Nw

m( f ), for all f ∈ Fm. First, we show again that no agent
connected to the WAN could be the bottleneck for configurationc. Indeed, sinceNm( f ) 6∼N(c)
we have that, by fair structure off , there exists at least onel ∈K m such thatNh

l (c)≥Nh
l ( f )+1.

Assuming that the agents connected to the WAN are the bottleneck in configurationc, we have
the following chain:

Uw(Nw
m( f )) = Uw(Nw

m(c))≤Uh(Nh
l (c))≤Uh(Nh

l ( f )+1) .

Thus,Uw(Nw
m( f ))≤Uh(Nh

l ( f )+1) indicating thatf could not be an equilibrium configuration.
This contradiction shows that the bottleneck agents for configurationc must be connected to
hotspots. It is easy to see thatmaxk∈K m

Nh
k (c) ≥ maxk∈K m

Nh
k ( f ) which yieldsUmin

m (c) ≤
Umin

m ( f ).

5. Proof of Proposition 4.1
Prior to giving a proof of Proposition 4.1 we provide several technical lemmas.

Lemma 5.1. For any realization of the Poisson processesΠa andΠh consider a service zone
associated with the WAN APwα

0 ∈ πw,α. Let

Lk(K) = (Mh
k −K)1{Mh

k≥K} , Pk(K) = (Mh
k −K +1)1{Mh

k≥K} . (1.A.11)
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For anym∈ N we have the following a.s. limits:

lim
α→∞

Hα
0

α
= λh , lim

α→∞

Mw,α
0

α
= λa , (1.A.12)

lim
α→∞

∑k∈K α
0

Lk(K)
Hα

0
= Eh

0 [L0(K)] , lim
α→∞

∑k∈K α
0

Pk(K)
Hα

0
= Eh

0 [P0(K)] , (1.A.13)

lim
α→∞

Mw,α
C0

α
= λa(1−e−λhπ|d|2) , lim

α→∞

Mw,α
C̄0

α
= λae−λhπ|d|2 , (1.A.14)

lim
α→∞

P
(
∃hk ∈ Sw,α

0 : Mh
k ≥ K

)
= 1, ∀K ≥ 0. (1.A.15)

Proof. The limits (1.A.12) follow by ergodicity [5] of the processπa andπh. One needs only
to note that the ratioα/|Sw,α

0 | converges to1 asα→ ∞ sinced (the radius of hotspot coverage)
is bounded.

Consider now the limits (1.A.13). Note that for eachk, and any fixedK, bothLk(K) and
Pk(K) are functionals of the realization of processesΠh and Πa within some a.s. bounded
region (Voronoi “flower” [12] associated with the Voronoi cellVh

k ). ThusLk(K) andPk(K) are
“local statistics” as defined in [12], and thus one can use Theorem 3.1 therein to obtain these
limits.

Now consider the limits (1.A.14). By (1.A.12) and (1.A.13) and noting that:

∑
k∈K α

0

Mh
k = ∑

k∈K α
0

Lk(K)|K=0 ,

we have:

lim
α→∞

∑k∈K α
0

Mh
k

α
= λhEh

0

[
Mh

0

]
.

Evaluating this expectation, we get:

Eh
0

[
Mh

0

]
= Eh

0


 ∑

ai∈Πa(Vh
0 )

1{ai∈Vh
0 }1{|ai |≤d}


 = Eh

0

[
∑

ai∈Πa

1{Πh(B(ai ,|ai |))= /0}1{|ai |≤d}

]
,

where the second equality uses the fact that ifai ∈ Vh
0 then there can be no other point ofΠh

within the ball of radius|ai | centered atai . Now by independence ofΠh andΠa and also using
Campbell’s formula and Slyvnyak’s theorem (see e.g. [13]) we get:

Eh
0

[
Mh

0

]
= Eh

0

[Z
x∈B(0,d)

1{Πh(B(x,|x|))= /0}λ
adx

]
=
Z

x∈B(0,d)
e−λhπ|x|2λadx

=
λa

λh (1−e−λhπ|d|2) ,

from which the first limit in (1.A.14) follows. The second limit in (1.A.14) follows by taking
into account the limit (1.A.13) and the first limit in (1.A.14).

Finally, to obtain the limit (1.A.15), we apply the Strong Law of Large Numbers to the sum
of random variablesZk , 1{Mh

k>K} to obtain:

lim
α→∞

1
Hα

0
∑

k∈K α
0

1{Mh
k>K} = lim

α→∞

1
Hα

0
∑

k∈K α
0

Zk = P(Mh
k > K) > 0 a.s. . (1.A.16)
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Here we used the fact that the variablesZk are i.i.d., since they depend on the number of points
of homogeneous Poisson process sampled on disjoint setsSh

k. Thus, at least one term in the sum
in (1.A.16) is nonzero, for sufficiently largeα, which proves the limit (1.A.15).

Lemma 5.2. Let ∆α
i wherei = 1,2,3,4 be defined as follows:

∆α
1 = Mw,α

0 , ∆α
2(K) = ∑

k∈K α
0

Lk(K) , ∆α
3(K) = ∑

k∈K α
0

Pk(K) , ∆α
4 = Mw,α

C̄0
.

Then for eachi, 1≤ i ≤ 4 and anyC > 0 we have:

lim
α→∞

P
[
|∆α

i −E [∆α
i ]|> C

√
α logα

]
= 0. (1.A.17)

Proof. To prove the lemma we will use Chebyshev’s inequality:

P
[
|∆α

i −E [∆α
i ]|> C

√
α logα

]
≤ var

[
∆α

i

]

C2 α logα
.

First we show that for1≤ i ≤ 4:
var [∆α

i ] = O(α) . (1.A.18)
Indeed,∆α

1 = Mw,α
0 is just a Poisson random variable with average that scales linearly inα.

Hence (1.A.18) is satisfied fori = 1. To obtain the bound on the variances of∆α
2 and∆α

3 we use
Lemma 1 in [12], which yields:

var [∆α
2(K)] = O(α) , var [∆α

3(K)] = O(α) .

Finally for the variance ofMw,α
C̄0

observe that

Mw,α
C̄0

= Mw,α
0 −∆α

2(0) .

Since the variances of both terms on the right areO(α) we get:

var [∆α
4 ] = O(α) .

Now using Chebychev’s inequality and (1.A.18) we obtain, for anyC > 0,

P
(
|∆α

i −E [∆α
i ]|> C

√
α logα

)
=

O(α)
Θ(α logα)

→ 0, whenα→ ∞ .

Lemma 5.3. Under the scaling Assumption 4.1, the equilibriumf α
0 in Sw,α

0 is unique and fair
w.h.p..

Proof. Using Lemma 5.2 we have that, eventually,Mw,α
C̄0

≥ N̄ a.s. asα → ∞. Taking into
account Assumption 4.1, the conditions of Proposition 3.2 hold w.h.p. Using Proposition 3.2
yields the statement of the lemma.

Lemma 5.4. For any equilibrium configurationf α
0 in Sw,α

0 we have that:

max
k∈K α

0

Nh
k ( f α

0 ) < max
k∈K α

0

Mh
k , w.h.p. (1.A.19)



24

Proof. Note that (1.A.19) has a strict inequality. Thus (1.A.19) implies that the largest number
of agents connected to any hotspot withinSw

0 in equilibrium f α
0 is strictly less than the maximum

number of agents in any one of the hotspots – at least asymptotically. We prove the lemma by
contradiction. Suppose that there exists a sequenceξε = {αn > 0| limn→∞ αn = ∞} with the
following property. For anyα ∈ ξε, f α

0 is such that for somelα ∈ K α
0 we haveNh

lα( f α
0 ) =

maxk∈K α
0

Mh
k with probability greater thanε. Then, for anyα ∈ ξε:

Jα(Mh
lα)≤ Nw,α

0 ( f α
0 ) , (1.A.20)

since no agent desires to switch to the WAN APw0 from the hotspothlα . Now, note thatf α
0 is

fair w.h.p, by Lemma 5.3 and thus:

Mh
k −1≤ Nh

k ( f α
0 )≤Mh

k ,

where we took into account that there are nok ∈ K α
0 such thatMh

k > Mh
lα . This yields, that at

most one agent within each hotspothk, for k∈K α
0 selects the WAN, thus

Nw,α
0 ( f α

0 )≤Mw,α
C̄0

+Hm, (1.A.21)

Now, using Assumption 4.1 and Lemma 5.1, the inequalities (1.A.20) and (1.A.21) imply:

j
(

Mh
lα

)
≤ λae−λhπd2

+λh . (1.A.22)

Taking into account that by Lemma 5.1 and Assumption 4.1:

liminfα→∞ max
k∈K α

0

Mh
k = ∞ , lim

N→∞
j(N) = ∞ , a.s.

we find that the inequality (1.A.22) is violated with probability tending to 1 asα→∞. Thus,ξε

can not exist for anyε > 0, which proves the lemma.

Lemma5.5. Consider a configurationf α
0 for service zoneSw,α

0 and letNh,α
max( f α

0 )= maxk∈K m
Nh

k ( f α
0 ).

For anyα > 0, a necessary and sufficient condition forf α
0 to be an equilibrium w.h.p. is that

f α
0 is a fair configuration that obeys either of the following:

Nh,α
max( f α

0 ) = 0, Jα(1) > Mw,α
0 , (1.A.23)

Nh,α
max( f α

0 )≥ 1, Jα
(

Nh,α
max( f α

0 )
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )+1

)
(1.A.24)

whereNh
k ( f α

0 ) = Nh,α
max( f α

0 ) for all k∈K α
0 , such thatMh

k ≥ Nh,α
max( f α

0 ), or:

Nh,α
max( f α

0 )≥ 1, Jα
(

Nh,α
max( f α

0 )
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )

)
, (1.A.25)

where∃k, l ∈K α
0 , such thatMh

k ,Mh
l ≥ Nh,α

max( f α
0 ), andMh

k = Nh,α
max( f α

0 ), Mh
l = Nh,α

max( f α
0 )−1.

Proof. We already proved in Lemma 5.3 that all equilibria inSw,α
0 have the same fair charac-

terizations w.h.p. In caseNh,α
max( f α

0 ) = 0 there are no agents connected to any hotspots inSw
0 .

The necessary and sufficient condition for that, as follows from the inequality (1.2), is given
by (1.A.23).

Consider the caseNh,α
max( f α

0 ) ≥ 1. First assume that for allk∈ K α
0 , such thatNh,α

max( f α
0 ) we

have thatNh
k ( f α

0 ) = Nh,α
max( f α

0 ). By Lemma 5.4 we haveNh,α
max( f α

0 ) < maxk∈K 0
Mh

k , and thus we
can use the equilibrium conditions (1.1) to obtain (1.A.24).
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Now assume, instead, that there exist suchk, l ∈ K α
0 , so thatMh

k ,Mh
l ≥ Nh,α

max( f α
0 ), and

Mh
k = Nh,α

max( f α
0 ), Mh

l = Nh,α
max( f α

0 )−1. For the hotspots havingNh,α
max( f α

0 )−1 agents connected
to them in configurationf α

0 , via equilibrium conditions (1.1) we get:

Jα
(

Nh,α
max( f α

0 )−1
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )

)
, (1.A.26)

while for the hotspots havingNh,α
max( f α

0 ) agents connected to them:

Jα
(

Nh,α
max( f α

0 )
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )+1

)
, (1.A.27)

Now, using monotonicity ofJα(·), by combining (1.A.26) and (1.A.27) we get (1.A.25).

Proof of Theorem 4.1. Let f α
0 denote an equilibrium configuration in the service zone

Sw,α
0 of the WAN AP wα

0 ∈ πw
α . By Lemma 5.3 such configurations have equivalent and fair

characterizations w.h.p, which gives Part 1 of the theorem. LetNh,α
max= maxk∈K α

0
Nh

k ( f ) where
f ∈ F α

0 is any fair equilibrium configuration. In what follows we will consider two cases that
depend on whether the density of agentsλa is less than the valuej(1). Our goal is to show that

thelimα→∞ Nh,α
max( f α

0 ) exists.

Case 1: λa < j(1). We will show thatλa < j(1) if and only if:

lim
α→∞

Nh,α
max= 0.

Indeed, the “only if” part follows from the condition (1.A.23) by dividing both sides byα and
taking limits asα → ∞. Now using the limit (1.A.12) we obtain thatNh,α

max= 0 w.h.p. implies
λa < j(1).

Next we prove that ifλa < j(1) thenNh,α
max= 0 w.h.p. Indeed, by Lemma 5.1 we know that:

Mw,α
0 = λaα+ ε(α) ,

where|ε(α)|= O
(√

α logα
)
. But then, for sufficiently largeα we have:

Mw,α
0 < Jα(1) ,

which, by Lemma 5.5 impliesNh,α
max= 0 w.h.p.

Case 2: λa ≥ j(1). We first prove thatNh,α
max has a limit onceα→ ∞. Consider any se-

quenceξ := {αn|n∈N}, wherelimn→∞ αn = ∞. We define the following disjoint subsequences
of ξ:

ξ1 =
{

α| α ∈ ξ, 1≤ Nh,α
max< max

k∈K α
0

Mh
k and∀k∈ K α

0 , s.t. Mh
k ≥ Nh,α

max, Nh
k ( f α) = Nh,α

max

}

ξ2 =
{

α| α ∈ ξ, 1≤ Nh,α
max< max

k∈K α
0

Mh
k , and

∃k, l ∈K α
0 , s.t. Mh

k ,Mh
l ≥ Nh,α

max, andNh
k ( f α) = Nh,α

max, Nh
l ( f α) = Nh,α

max−1

}

ξ3 =
{

α| α ∈ ξ, 1≤ Nh,α
max= max

k∈K α
0

Mh
k

}
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ξ4 =
{

α| α ∈ ξ, Nh,α
max= 0

}

Clearly, ξ =
S4

i=1 ξi . However, by Lemma 5.4, the sequenceξ3 is finite. Moreover, we have
proved above that whenλa≥ j(1) the sequenceξ4 is finite too. Thus, asymptotically,ξ consists
only of the members of the sequencesξ1 andξ2. Note that eitherξ1 or ξ2 or bothξ1 andξ2
have to be infinite, sinceξ is infinite.

By definition of ξ1 andξ2, we have, thatmaxk∈K α
0

Mh
k > Nh,α

max whenα ∈ ξ1∪ ξ2. Thus,

if any of ξ1 or ξ2 is finite, to prove the statement of the theorem we have to show thatNh,α
max

converges along the other infinite sequence. If bothξ1 andξ2 are infinite, then we need to show
thatNh,α

max is asymptotically the same along each subsequence, and in addition that:

lim
α∈ξ1 , α→∞

Nh,α
max= lim

α∈ξ2 , α→∞
Nh,α

max.

We will consider first the sequenceξ1 and assume that it is infinite. We will show that:

lim
α∈ξ1, α→∞

Nh,α
max= K1 , (1.A.28)

whereK1 is independent ofα. We argue by contradiction. In particular, assume that there exist

arbitrary largeγ,δ∈ ξ1 such thatNh,γ
max 6= Nh,δ

max. Without loss of generality letγ < δ, and consider

the equilibrium conditions inSw,δ
0 . By Lemma 5.5 we have that:

Jδ
(

Nh,δ
max

)
−1≤ Nw

0 ( f δ
0 ) < Jδ

(
Nh,δ

max+1
)

,

Now multiplying these inequalities byγ/δ, and using Assumption 4.1, we obtain:

Jγ
(

Nh,δ
max

)
− γ/δ ≤ γ/δNw,δ

0 ( f δ
0 ) < Jγ

(
Nh,δ

max+1
)

.

Note that by Lemma 5.1 we have:

γ/δNw,δ
0 ( f δ

0 ) = γ
(

λae−λhπd2
+λhEh

0

[
Pδ

0(Nh,δ
max)

])
+ ε1(γ,δ) ,

where, by Lemma 5.2,|ε1(γ,δ)|= O
(

γ
√

logδ/δ
)

= O
(√

γ logγ
)
. This yields:

Jγ
(

Nh,δ
max

)
−1≤ γ

(
λae−λhπd2

+λhEh
0

[
Pδ

0(Nh,δ
max)

])
+ ε1(γ,δ) < Jγ

(
Nh,δ

max+1
)

. (1.A.29)

Now consider a fair configuratioñf γ
0 for service zoneSw,γ

0 , such thatmaxk∈K α
0

Nh
k ( f̃ γ

0 ) = Nh,δ
max

and such that for allk∈K γ
0 for whichMh

k ≥Nh,γ
maxwe haveNh

k ( f̃ γ
0 ) = Nh,δ

max. Clearly, in this case
Lemma 5.1 and Lemma 5.2 yield:

Nw
0 ( f̃ γ

0 ) = γ
(

λae−λhπd2
+λhEh

0Pδ
0

(
Nh,δ

max

))
+ ε2(γ) ,

where|ε2(γ)|= O
(√

γ logγ
)
. By Assumption 4.1 (item 4) we have, for all integerK:

λae−λhπd2
+λhEh

0Pδ
0 (K) 6= j(K) ,

which then translates the inequalities (1.A.29) into:

j
(

Nh,δ
max

)
< λae−λhπd2

+λhEh
0Pδ

0

(
Nh,δ

max

)
< j

(
Nh,δ

max+1
)

. (1.A.30)
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Now note that|ε1(γ,δ)+ ε2(γ)|= O
(√

γ logγ
)

= o(γ). Hence, using (1.A.29), one gets

Jγ
(

Nh,δ
max

)
− γ/δ≤ Nw,γ

0 ( f̃ γ
0 ) < Jγ

(
Nh,δ

max+1
)

,

onceγ < δ are selected large enough. By Lemma 5.5 we have thatf̃ γ
0 is a fair equilibrium that

is different from f γ
0 . By Lemma 5.3 this can not happen w.h.p. Thus we obtain that

lim
α∈ξ1,α→∞

Nh,δ
max= K1

for some positive integerK1.
Now, if ξ2 is finite, we are done, since asymptoticallyξ consists only ofξ1 and we have

already shown that alongξ1 the value ofNh,α
max has a limit. Now we will prove that ifξ2 is

infinite, then the value ofNh,α
max alongξ2 also converges to a limit. Take anyγ ∈ ξ2 then, by

Lemma 5.5 we have, that

Jα(Nh,γ
max)−1≤ Nw,γ

0 ( f γ) < Jα(Nh,γ
max) .

Dividing these inequalities byγ, by Assumption 4.1, we have:

j(Nh,γ
max)−1/γ≤ Nw

0 ( f γ)
γ

< j(Nh,γ
max) . (1.A.31)

We now show thatNh,γ
max< K0 for someK0 independent ofγ. Indeed, otherwise, there exists a

subsequenceξ5 ⊂ ξ2, with limγ→∞,γ∈ξ5
Nh,γ

max= ∞. Now using Lemma 5.1, we have that

limsupγ→∞,γ∈ξ5

Nw
0 ( f γ)

γ
< λae−λhπd2

+λh lim
γ→∞,γ∈ξ5

Eh
0

[
Pγ

0

(
Nh,γ

max

)]
= λae−λhπd2

.

At the same time we have that
lim

γ→∞,γ∈ξ5

j(Nh,γ
max) = ∞ ,

which means that the inequalities (1.A.31) could not be satisfied along the subsequenceξ5.

Thus we have a contradiction, and∃K0, such thatNh,γ
max< K0.

Thus the set{Nh,γ
max|γ ∈ ξ2} is finite, hence ifξ2 is infinite, at least some values from this set

must realize infinitely often alongξ2. Consider any valueK which is achieved infinitely often
alongξ2, i.e. there exists a subsequenceξ6 ⊂ ξ2, with sup{γ|γ ∈ ξ6} = ∞ and for anyγ ∈ ξ6,

Nh,γ
max= K. Note thatNw,γ

0 ( f γ
0 ) must satisfy:

Mw,γ
C̄0

+ ∑
k∈K γ

0

(Mh
k −K)1{Mh

k≥K} < Nw
0 ( f γ

0 ) < Mw,γ
C̄0

+ ∑
k∈K γ

0

(Mh
k −K +1)1{Mh

k≥K} w.h.p. ,

since f γ
0 is asymptotically fair w.h.p. Dividing these inequalities byγ, and comparing to in-

equalities (1.A.31), one finds thatK must satisfy:

l(K), λaeλhπd2
+λhEh

0 [L0(K)] < j(K)≤ λaeλhπd2
+λhEh

0 [P0(K)], u(K) , (1.A.32)

where we used Lemma 5.1. Note thatu(K) = l(K+1) and thus the intervals(l(K),u(K)] are dis-
joint for different integerK. Moreover

S∞
K=1(l(K),u(K)] = (0,u(1)]. Since j(K) is increasing

in K andlimK→∞ j(K) = ∞, there exists exactly one integer solution to the inequalities (1.A.32),
since we assumed

j(1)≤ λa ,
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andu(1) = λa. But then the value ofNh,γ
max is asymptotically unique w.h.p., whenγ ∈ ξ2 and

γ→ ∞.
We are left to show that if bothξ1 andξ2 are infinite, then the asymptotic valuesK1 andK2

alongξ1 andξ2 respectively satisfyK1 = K2. Observe that the condition (1.A.30) implies for
K1:

j(K1) < u(K1) < j(K1 +1) .

Now, sinceK2 is a unique integer solution to (1.A.32) we obtain thatK2 = K1. SinceNh,α
max( f α

0 )=
K1 w.h.p. whenα ∈ ξ1 andNh,α

max( f α
0 ) = K2 = K1 w.h.p whenα ∈ ξ2, we obtain Part 2 of the

theorem. Lastly, Part 3 of the theorem follows from the above analysis.

Notes
1. A more general case with utilities dependent on congestion and distance from a serving AP is treated

in [11].
2. Note that we use letterM with different sub- and super- scripts to refer to the actual number of agents

that fall within different sets, while we use the letterN to refer to the number of agents within different sets
to refer to the agentsactually connectedto particular APs.

3. The ambiguity arises in the case when for a particular fair configurationf ∈ Fm we have0 < Nh
k =

Km < maxk Mh
k , for all k ∈ K m and for someKm ≥ 0. Then the upper surface of the “slicing plane”,

associated with this configuration can be drawn at either the levelsKm or Km+1.
4. Since, as we alluded above, the WAN service might be degrading slower with the number of con-

nections than that of hotspots, the assumption that (1.5) holds may be reasonable.
5. This is, perhaps, not a bad assumption since WAN network would be carefully designed and optimized
6. See e.g. [9] for a nice comparison of WiFi vs. 3G technologies.
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